Hart Blik . nl - Gezien vanuit het hart!
John Jacobs
  • John
    • Over mij
    • About me
  • COVID-19 overzicht
    • Groepsimmuniteit weer opnieuw bekeken >
      • ​1. Over groepsimmuniteit. Giwob
      • 2. Drie mislukte pogingen. GIwob
      • ​3. Bereken de kosten. GIwob
      • 4. Onvolledige immuniteit. Giwob
      • 5. Wat zou er mis kunnen gaan? GIwob
      • 6. Wat kunnen we doen? GIwob
      • 7. Kort & krachtig! GIwob
    • Simpel&complex
    • Viruscontrole
    • Meer negativiteit
    • Epidemie controle
    • 2jaar-COVID19
    • Humanitair
    • Vragen >
      • Vragen over ziekte
      • Vragen over vaccins
      • Vragen over immuniteit
      • Vragen over Epidemie
      • Vragen over mutaties
      • Vragen over politiek
    • Gezondheidsraad
    • VirusEthiek >
      • Effectief en open strijden
      • Gaan we voor het goede?
      • Ziektecijfers
      • Bijzondere immuniteit
      • Vaccinatie
      • Preventie besmettingen
    • Virusmutaties
    • infectie zonder ziekte
    • Onnavolgbaar beleid dat verkeerd uitpakt >
      • Hoe goed bestrijden we COVID-19 ?
      • Gevaarlijk
      • Stoppen
      • Zijn de vaccins goed?
      • Beschermen vaccins tegen infectie?
      • Maakte Nederland de juiste keuzes?
      • Achterkamertjes geheimen
      • Wat zou Nederland moeten gaan doen?
      • Kanttekeningen
    • Afweer en vaccin >
      • IFR
      • Immuunreacties
      • Verschillende vaccins
      • Studies en resultaten
      • Een vaccin en dan?
    • Vaccinatieplan
    • Epidemiebestrijding herzien >
      • Epidemiebestrijding herzien. Strategie
    • Test, traceer & isoleer
    • Palet aan testen
    • Besmetting voorkomen
    • Geen groepsimmuniteit
    • Geen vaccin
    • Ziekte COVID-19
    • Advies VWS
    • 1953 versus 2020
    • Onder de loep >
      • RIVM virus bestrijding
    • Dwalen op bekend terrein
    • Dashboard >
      • Dashboard. I
    • Humanitair
    • Foute afweer
    • Betere bestrijding van de epidemie >
      • Beter (A) Impact COVID-19
      • Beter (B) Tussen complot en kritiekloos
      • Beter (C) Verschillende strategieën
      • Beter (D) Vaccin of beter maken
    • Cijfers en data
    • Bestrijding COVID19
    • Mondkapjes
    • Immuniteit en antistoffen >
      • Rekenen zonder getallen 7
    • Model leren voor beter handelen >
      • Model leren voor beter handelen 2
      • Model leren voor beter handelen 3
      • Model leren voor beter handelen 4
      • Model leren voor beter handelen 5
      • Model leren voor beter handelen 6
      • Model leren voor beter handelen 7
    • Verloren door te weinig kennis
    • Ontelbaar op waarde geschat
    • Rekenen zonder getallen
    • Versimpeld model Corona NL >
      • Addendum. Correctie
      • Erratum
    • FAQ - COVID-19 >
      • FAQ. Epidemie
      • FAQ. Model
      • FAQ. Bestrijding
      • FAQ. Ziekte
      • FAQ. Coronavirussen
    • Reacties
    • Platform BZC
  • Medisch & biologie
    • Schepping & evolutie
    • Schepping verbeteren
    • Niet-sterieliserende slijmvlies immuniteit
    • Willem den Otter. In Memoriam
    • Luchtvervuiling doodt >
      • Luchtvervuiling doodt1
      • Luchtvervuiling doodt. 2
      • Luchtvervuiling doodt. 3.
      • Luchtvervuiling doodt. 4.
      • Luchtvervuiling doodt. 5.
    • Voorkom epidemie
    • Expert opinion
    • Ongezonde gezondheid
    • HPV
    • Ontsnappende virussen
    • Eiwit evolutie >
      • Afweer ontwerp
    • Tumor immunologie
    • Huidveiligheid
  • Samenleving
    • Schepping & evolutie
    • Schepping verbeteren
    • Licht & helderheid verschaffen.
    • AI summerschool (NL)
    • Racisme
    • Kwaadaardig complotten
    • Drie complotten
    • Onvrede en vrede
    • Bang
    • Schoppentroef
  • ORTEC blogs
    • P4O2-COVID19
    • U-Prevent
    • Clinical decision support
    • Data voor betere patiëntenzorg
  • Federa
    • Federa deelnemers
  • English blogs
    • Questions on COVID-19 >
      • Disease
      • Vaccine
      • Immunity
      • Epidemics
      • Mutations
      • Poltics
    • Virus Ethics >
      • Effective and open
      • Do we strife for the good things?
      • Disease outnumbered
      • Special immunity
      • Vaccination
      • Immune responses and vaccin >
        • IFR
        • Immune responses
        • Different vaccines
        • Trials and results
        • Next steps
        • Vaccinationwise
      • Prevention of epidemic
    • Non-sterile mucosal immunity
    • Range of tests
    • Contamination
    • No herd immunity
    • No vaccine
    • Disease
    • Lost at familiar property
    • Corona Dashboard
    • Fighting COVID19
  • ORTEC in English
    • P4O2-COVID19
    • Data science for better treatment of leukemia.
    • U-Prevent [EN]
    • Clinical decision support [EN]
    • Data to improve patient care

Data science for better treatment of leukemia.

Foto

John Jacobs
30 juli 2020

Jacqueline Cloos of the Amsterdam University Medical Center studies hematological cancers for the development of algorithms that can be implemented in clinical decision support tools to optimize treatment choices. ORTEC offers added value to this mathematical and statistical research with LogiqCare and the Big Data Portal.
Foto
Figure 1. Acute Myeloid Leukemia in Blood
Acute Myeloid Leukemia (AML; Figure 1) accounts for 1-2% of all tumor-related deaths. This form of cancer can occur at all ages, but the incidence of AML rises with age. Survival without treatment is on average about half a year. Treatment of AML consists of multiple cycles of intensive chemotherapies and depending on the risk of relapse also autologous or allogenic stem cell transplantation. For the choice of the latter the relatively high treatment-related mortality (2% to more than 10%) has to be taken into account. AML has considerable heterogeneity in underlying genetics, mechanisms, and patient-related characteristics. The five-year survival varies from 15 to 70% depending on risk-group classification. Patients with different forms of AML need different therapeutic interventions for optimal survival. In conventional medicine, AML was considered a single disease, with limited therapeutic progress (Figure 2).
Foto
Figure 2. In conventional medicine complex data are reduced prior analytics. In personalized medicine, complex data are differentially analyzed in different interventions to optimize therapy for each patient group independently.

Personalized medicine

Personalized medicine and personalized risk classification to identify patients at risk for developing a relapse is currently suboptimal and relies on characteristics of patients, their treatment responses, tumor cytogenetics and mutations. The aim is to develop an accurate prediction model to improve risk assessment and survival of patients after the first induction chemotherapy cycles to determine the best therapeutic regime. Within patient’s disease follow-up should be compared between patients with similar molecular and/or immunological characterization of their tumors. This includes follow-up of changes in the characterization of minimal residual disease (MRD), i.e. the presence of deviant blood cell precursors that might be tumor cells. Structuring complex data is a high-level specialization from medical research requiring integration of the medical, mathematical and ICT insights. The aim is to differentially analyze the complex data to determine which parameters relate with outcomes for various therapies to improve and further personalize AML treatment.

Toolbox

ORTEC structures complex medical data from various sources, like centralized patient follow-up and experimental laboratory data on various tumor markers and their numbers in time. Patient data from various source databases are transferred to LogiqCare through the Extract-Transform-Load (ETL) process. These patient data are synced anonymously in the Big Data Portal to have structured data ready for Spotfire analysis for mathematical and statistical research on the structured data. Other research groups from Europe and beyond have expressed their interest to cooperate in this data research project. The aim is to develop algorithms that will be implemented for clinical decision support tools to optimize treatment decisions by physicians and patients. ​
Below is a link to a video of a master student math working on this AML project.

John Jacobs, 30th of july 2020
Powered by Maak je eigen unieke website met aanpasbare sjablonen.